
Binghamton

University

CS-220

Spring 2016

x86 Assembler
Computer Systems: Sections 3.1-3.5

Binghamton

University

CS-220

Spring 2016

Disclaimer

I am not an x86 assembler expert.

I have never written an x86 assembler program.

(I am proficient in IBM S/360 Assembler and LC3 Assembler.)

You will NOT be expected to WRITE x86 assembler.

You WILL be expected to be able to READ x86 assembler!

Binghamton

University

CS-220

Spring 2016

x86 Generalizations

• Designed to be Compiler Friendly
• Stack manipulation instructions

• ALU uses data from memory as well as registers!

• Downward Compatible
• Newer versions are supersets of older versions

• CISC (Complex Instruction Set Computing)

Binghamton

University

CS-220

Spring 2016

RISC Concept

ADD ACCUM,Y

Binghamton

University

CS-220

Spring 2016

CISC Concept

IMULT X,Y

Micro-code
…
IMULT -> SHIFTL 1,X

ADD ACCUM,Y
SHIFTL 1, X
…

…

ADD ACCUM,Y

Binghamton

University

CS-220

Spring 2016

Origin

Accumulate

Counter

Data

Base

Source Index

Destination Index

Stack Pointer

base Pointer

x86 Integer Registers

%rdi

%rax

%rcx

%rdx

%rsi

%rbx

%rbp

%rsp

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah %al

%ch %cl

%dh %dl

%bh %bl

8
16

32
64

Binghamton

University

CS-220

Spring 2016

x86 Data “Types”

No type checking - Instruction and/or context implies data type
• Arithmetic instructions treat operands as numbers

• Either signed or unsigned!

• Instruction suffix used to identify precision of arguments
• b – 1 byte (8 bits)
• w – word (2 bytes, 16 bits)
• l – long word (4 bytes, 32 bits)
• q – quad word (8 bytes, 64 bits)

• With no suffix, register type implies precision of arguments
• ah/al – b – 8 bits
• ax – w – 16 bits
• eax – l – 32 bits
• rax – q – 64 bits

• Floating point – 4, 8, or 10 bytes

Binghamton

University

CS-220

Spring 2016

x86 Assembler Syntax

[<label>:] <mnemonic> arg1[,arg2…] [; comment]

• Label optional – identifies start of this line

• mnemonic – See http://ref.x86asm.net/ for a complete list

• Up to 4 arguments

• Comment ends at the end of this line

http://ref.x86asm.net/

Binghamton

University

CS-220

Spring 2016

Assembler Argument Generalities

• Reads LEFT to RIGHT ⇒ (AT&T syntax… INTEL syntax is RtoL)
• mov 5,eax ; move the constant 5 => eax

• add bx, ax ; add bx + ax => ax (ax = bx+ax;)

• Arguments may be: register, constant value, memory reference

• Only ONE argument may be a memory reference!
• at least one argument must be a register or constant

• Optional argument prefixes
• % - register e.g. “movl 5,%eax”

• $ - constant value e.g. “movl $5,%eax”

Binghamton

University

CS-220

Spring 2016

Constant (literal) values

Similar to C Conventions….

• Numbers are decimal by default, octal if preceded by 0, hex if
preceded by 0x

• Single characters are enclosed in single quotes, including special
characters such as ‘\n’, ‘\t’

• Strings are arrays of characters enclosed in double quotes

• Labels may be used in place of addresses

Binghamton

University

CS-220

Spring 2016

Basic x86 addressing modes

• Normal: Register contains address of target in memory
• Parenthesis indicate “Use Value at this address”

• movl (%ecx),%eax ; Put the value at memory[ecx] into eax

• Displacement: Register is near address of target in memory
• Offset from register specified before parenthesis

• movl 8(%ebp),%edx ; Put the value at 8 past the base pointer into edx

• See http://en.wikipedia.org/wiki/X86#Addressing_modes if you
need the entire story – but it’s complicated

http://en.wikipedia.org/wiki/X86#Addressing_modes

Binghamton

University

CS-220

Spring 2016

Table Addressing Mode

• Generally: <OFFSET>(<BASEREG>,<ROWREG>,<WIDTH>)
• e.g. 4(%ebx,%ecx,12)

• Address: = (<BASEREG>)+(ROWREG)*<WIDTH> + <OFFSET>

• e.g. (%ebx)+(%ecx)*12+4

(<BASEREG>)

<WIDTH>

<
(R

O
W

R
E

G
)>

<OFFSET>

Binghamton

University

CS-220

Spring 2016

Table Addressing Mode

• Also: <BASE>(<COLREG>,<ROWREG>,<WIDTH>)
• e.g. mytable(%ebx,%ecx,12)

• Address: = <BASE> + (<COLREG>)+(ROWREG)*<WIDTH>

• e.g. mytable+(%ecx)*12+(%ebx)

<BASE>

<WIDTH>

<
(R

O
W

R
E

G
)>

(<OFFREG>)

Binghamton

University

CS-220

Spring 2016

The MOV instruction

• Most often used instruction!

• More “copy” than “move”

• Copies 1,2,4, or 8 bytes from ARG1 to ARG2

mov $-12,%eax ; put -12 into 4 byte eax register

mov $0xffff,(%esp) ; put -1 at top of stack

mov 12(%ebp),%eax ; copy data at 12 past base pointer into eax

movb chartab(%eax,%ebx,14),%al

; copy byte at row %ebx, col %eax of chartab into %al

Binghamton

University

CS-220

Spring 2016

Logic Instructions

• Standard 2 arg: and or xor shl shr
and %ebx,%eax ; eax=eax & ebx

shr $4,%eax; eax = (unsigned)eax>>4

• Single argument: not neg
not %eax ; flip bits in eax

neg %ebx; take two’s complement (flip bits and add 1) of ebx

Binghamton

University

CS-220

Spring 2016

Arithmetic Instructions

• Standard integer arithmetic: add sub
add $10,(%eax); (*eax)=(*eax)+10

sub $4,%esp ; esp=esp-4 (move stack pointer down)

• “Special” integer arithmetic: imul idiv
• imul cannot write to memory

• idiv divides register pair (EDX:EAX) and puts quotient/remainder back

• Single argument: inc dec
inc %eax; eax=eax+1 – same as add eax,1

dec (%esp) ; decrement the value at the top of the stack by 1

• Floating Point Instructions

Binghamton

University

CS-220

Spring 2016

Dealing with Pointers

• Load effective address: lea
• Used for implicit arrays/structures, etc.
• Calculates address from first argument, and writes that address to second

lea $8(%esp),%eax ; %eax->array[0]
move $0,%edx ; sum=0

loop: add (%eax),%edx ; sum=sum+(%eax)
add $4,%eax ; increment pointer
cmp $0,(%eax) ; is (%eax) >=0?
jge loop ; Yes… continue

Binghamton

University

CS-220

Spring 2016

Not done yet…

• Next – x86 control instructions…

