Binghamton CS-220

University Spring 2016

X86 Assembler

Computer Systems: Sections 3.1-3.5

Binghamton CS-220

University

Spring 2016

Disclaimer

[am not an x86 assembler expert.
[have never written an x86 assembler program.
(I am proficient in IBM S/360 Assembler and LC3 Assembler.)

You will NOT be expected to WRITE x86 assembler.
You WILL be expected to be able to READ x86 assembler!

Binghamton CS-220

University Spring 2016

Xx86 Generalizations

* Designed to be Compiler Friendly
» Stack manipulation instructions
* ALU uses data from memory as well as registers!

* Downward Compatible
* Newer versions are supersets of older versions

* CISC (Complex Instruction Set Computing)

Binghamton CS-220

University Spring 2016

RISC Concept

ADD ACCUM,Y

Binghamton CS-220

University Spring 2016

CISC Concept

IMULT X,Y

—_—’/—_—_-

Micro-code

IMULT -> SHIFTL 1,X
ADD ACCUM,Y
SHIFTL 1, X

ADD ACCUM,Y

Binghamton CS-220

University Spring 2016
X860 Integer Registers
L o1 - 32 s -
‘4_ 16 — — Origin
%ah %al Accumulate

%ch %ocl Counter

%dh %Il Data

%bh JASMl| Base

Source Index

Destination Index

Stack Pointer

base Pointer

Binghamton CS-220

University Spring 2016

x86 Data “Types”

No type checking - Instruction and/or context implies data type

* Arithmetic instructions treat operands as numbers
* Either signed or unsigned!

* Instruction suffix used to identify precision of arguments
* b - 1 byte (8 bits)
« w-word (2 bytes, 16 bits)
* | -long word (4 bytes, 32 bits)
* - quad word (8 bytes, 64 bits)
* With no suffix, register type implies precision of arguments
* ah/al - b - 8 bits
* ax - w - 16 bits
* eax - 1 - 32 bits
* rax — q - 64 bits

* Floating point - 4, 8, or 10 bytes

CS-220

Binghamton
Spring 2016

University

X86 Assembler Syntax

|<label>:] <mnemonic> argl|,arg2...] |; comment]

 Label optional - identifies start of this line
* mnemonic - See http://ref.x86asm.net/ for a complete list

* Up to 4 arguments
e Comment ends at the end of this line

http://ref.x86asm.net/

Binghamton CS-220

University Spring 2016

Assembler Argument Generalities

* Reads LEFT to RIGHT = (AT&T syntax... INTEL syntax is RtoL)

* mov 5,eax: move the constant 5 => eax
* add bx, ax; add bx + ax => ax (ax = bx+ax;)

* Arguments may be: register, constant value, memory reference

* Only ONE argument may be a memory reference!
 at least one argument must be a register or constant

* Optional argument prefixes
* % - register e.g. “movl 5,%eax”
* $ - constant value e.g. “movl $5,%eax”

Binghamton CS-220

University Spring 2016

Constant (literal) values

Similar to C Conventions....

 Numbers are decimal by default, octal if preceded by 0, hex if
preceded by 0x

* Single characters are enclosed in single quotes, including special
characters such as ‘\n’, ‘\t’

* Strings are arrays of characters enclosed in double quotes
 Labels may be used in place of addresses

Binghamton CS-220

University Spring 2016

Basic x86 addressing modes

* Normal: Register contains address of target in memory
* Parenthesis indicate “Use Value at this address”
* movl (%ecx),%eax ; Put the value at memory|ecx] into eax

* Displacement: Register is near address of target in memory
* Offset from register specified before parenthesis
* movl 8(%ebp),%edx ; Put the value at 8 past the base pointer into edx

 See http://en.wikipedia.org/wiki/X86#Addressing modes if you
need the entire story - but it’s complicated

http://en.wikipedia.org/wiki/X86#Addressing_modes

Binghamton CS-220

University

Table Addressing Mode

Spring 2016

. Generally: <OFFSET>(<BASEREG>,<ROWREG>,<WIDTH>)
* e.g. 4(%ebx,%ecx,12)

- Address: = (<BASEREG>)+(ROWREG)*<WIDTH> + <OFFSET>

(<BASEREG>)
< <WIDTH> »

* e.g. (%ebx)+(%ecx)*12+4

|[<(TIM0oD)>

<OFFSET> |

Binghamton CS-220

University

Table Addressing Mode

Spring 2016

* Also: <BASE>(<COLREG>,<ROWREG>,<WIDTH>)
* e.g. mytable(%ebx,%ecx,12)

* Address: = <BASE> + (<COLREG>)+(ROWREG)*<WIDTH>

i < <WIDTH> »

* e.g. mytable+(%ecx)*12+(%ebx)

|[<(TIM0oD)>

(<OFFREG>) |

Binghamton CS-220

University Spring 2016

The MOV Instruction

e Most often used instruction!
e More “copy” than “move”
 Copies 1,2,4, or 8 bytes from ARG1 to ARG2

mov $-12,%eax ; put -12 into 4 byte eax register

mov $O0xffff,(%esp) ; put -1 at top of stack

mov 12(%ebp),%eax ; copy data at 12 past base pointer into eax
movb chartab(%eax,%ebx,14),%al

. copy byte at row %ebx, col %eax of chartab into %al

Binghamton CS-220

University Spring 2016

Logic Instructions

 Standard 2 arg: and or xor shl shr
and %ebx,%eax ; eax=eax & ebx
shr $4,%eax; eax = (unsigned)eax>>4

* Single argument: not neg
not %eax ; flip bits in eax
neg %ebx; take two’s complement (flip bits and add 1) of ebx

Binghamton CS-220

University Spring 2016

Arithmetic Instructions

» Standard integer arithmetic: add sub

add $10,(%eax); (*eax)=(*eax)+10

sub $4,%esp ; esp=esp-4 (move stack pointer down)
 “Special” integer arithmetic: imul idiv

* imul cannot write to memory

* idiv divides register pair (EDX:EAX) and puts quotient/remainder back

* Single argument: inc dec
inc %eax; eax=eax+1 - same as add eax,1
dec (%esp) ; decrement the value at the top of the stack by 1

* Floating Point Instructions

Binghamton CS-220

University Spring 2016

Dealing with Pointers

e Load effective address: lea
* Used for implicit arrays/structures, etc.
 Calculates address from first argument, and writes that address to second

lea $8(%esp),%eax ; %eax->array[0]
move $0,%edx ; sum=0

loop: add (%eax),%edx ; sum=sum+(%eax)
add $4,%eax ; increment pointer
cmp $0,(%eax) ; is (%eax) >=0?
jge loop ; Yes... continue

Binghamton CS-220

University Spring 2016

Not done yet...

* Next — x86 control instructions...

